Nucleotide diversity patterns of three divergent soybean populations: evidences for population‐dependent linkage disequilibrium and taxonomic status of Glycine gracilis
نویسندگان
چکیده
The level of linkage disequilibrium (LD) is a major factor to determine DNA polymorphism pattern of a population and to construct high-resolution maps useful in localizing and gene cloning of complicated traits. Here, we investigated LD level of three soybean populations with different genetic backgrounds and taxonomic status of G. gracilis by comparing the DNA polymorphism patterns of four high-diversity single-copy nuclear genes. A total of 152, 22, and 77 accessions of G. soja, G. gracilis, and G. max were observed. The results indicated that G. max retained only 75.3 (π) and 39% (θ) of the nucleotide polymorphism found in G. soja. Four gene loci evolved according to neutrality in both G. max and G. gracilis populations, and three gene loci evolved according to neutrality in G. soja population by Tajima's and Fu and Li's test. However, one gene locus deviated from neutrality by Fu and Li's test in the G. soja population. Further, medial level of LD (average r (2) = 0.2426) was found in intragene in G. max and G. gracilis populations, but unexpected low level of LD (r (2) ≤ 0.0539) was found in G. soja population. Significant genetic differentiation was detected between G. max and G. soja populations and also between G. max and G. gracilis populations; however, nonsignificant genetic differentiation was found between G. gracilis and G. soja populations. The results suggest that LD level depends on genetic background of soybean population, and implicit that G. gracilis should be regarded as the variant of G. soja, not as an independent species.
منابع مشابه
The Pattern of Linkage Disequilibrium in Livestock Genome
Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...
متن کاملRecombination hotspots rather than population history dominate linkage disequilibrium in the MHC class II region.
Recombination, demographic history, drift and selection influence the extent of linkage disequilibrium (LD) in the human genome, but their relative contributions remain unclear. To investigate the effect of meiotic recombination versus population history on LD, three populations with different demographic histories (UK north Europeans, Saami and Zimbabweans) were genotyped for high-frequency si...
متن کاملHighly variable patterns of linkage disequilibrium in multiple soybean populations.
Prospects for utilizing whole-genome association analysis in autogamous plant populations appear promising due to the reported high levels of linkage disequilibrium (LD). To determine the optimal strategies for implementing association analysis in soybean (Glycine max L. Merr.), we analyzed the structure of LD in three regions of the genome varying in length from 336 to 574 kb. This analysis wa...
متن کاملNucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera).
*Current perceptions that poplars have high levels of nucleotide variation, large effective population sizes, and rapid decay of linkage disequilibrium are based primarily on studies from one poplar species, Populus tremula. *We analysed 590 gene fragments (average length 565 bp) from each of 15 individuals from different populations from throughout the range of Populus balsamifera. *Nucleotide...
متن کاملWhole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula.
Medicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume-rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions. Our analyses reveal that M. truncatula harbors both higher diversity and less LD than soy...
متن کامل